Simulation of sheared suspensions with a
parallel implementation of QDPD

James S. Sims and Nicos Martys
National Institute of Standards and Technology
Gaithersburg, MD 20899-8911

Correspondence to:
James S. Sims
National Institute of Standards and Technology
100 Bureau Drive Stop 8911
Gaithersburg, MD 20899-8911
jim.sims@nist.gov
phone - 301-975-2710
fax - 301-975-3218

PACS numbers: 83.80.H, 83.10.R, 83.85.P

keywords: Dissipative particle dynamics, mesoscopic modeling,
parallel agorithms, rheology, spatial decomposition, suspensions

Abstract

A parallel quaternion-based dissipative particle dynamics (QDPD) pro-
gram has been developed to study the flow properties of complex fluids sub-
ject to shear. The parallelization allows for simulations of greater size and
complexity and is accomplished with a parallel link-cell spatial decomposi-
tion using MPI[1]. Rigid body inclusions spread out across processors, the
algorithm implications of the DPD random force, and the sheared bound-
ary condition are all discussed. Results are presented for two different dis-
tributed memory architectures. Parallel efficiencies were significatly im-
proved for benchmark calculations.

|. Introduction

The flow properties of suspensions (e.g., colloids, ceramic slurries, and concrete)
is of fundamental interest and important for many technological applications.
While some analytical solutions describing the rheological properties of simple
suspensions exist, e.g. very dilute suspensions, understanding the flow of more
complex suspensions (e.g. dense suspensions, suspensions composed of parti-
cles that interact, etc.) remains a great challenge. Modeling such systems by
computational fluid dynamics, while promising, remains a challenge because it is
difficult to track boundaries between different fluid and solid phases. Recently,
a new computational method called dissipative particle dynamics (DPD) [2] has
been developed which holds promise for modeling such complex fluids. Indeed
DPD may have some advantages over other computational fluid dynamics meth-
ods because DPD can naturally accommodate many boundary conditions while
not requiring meshing (or remeshing) of the computational domain.

On the surface, DPD looks very much like a molecular dynamics algorithm [3]
(MD) where particles, subject to interatomic forces, move according to Newton’s
laws. However, the particles in DPD are not atomistic, but instead are a meso-
scopic representation of the fluid. As a result, the interactions between the DPD
particles are not directly based on a Lennard-Jones potential, but are typically
produced by three classes of forces: conservative forces, dissipative forces, and
a random force. The conservative force is simply a central force, derivable from
some potential. The dissipative force is proportional to the difference in velocity
between particles and acts to slow down their relative motion. The dissipative
force can be shown to produce a viscous effect. The random force (usually based
on a Gaussian random noise) helps maintain the temperature of the system while
producing some viscous effects. It can be shown that, in order to maintain a well
defined temperature by way of consistency with a fluctuation-dissipation theorem
[4], coefficients describing the strength of the dissipative and random forces must
be coupled. By mapping of the DPD equations of motion to the Fokker-Planck
equation [5], it has been demonstrated that the DPD equations can recover hydro-
dynamic behavior consistent with the Navier-Stokes equations.

To model a rigid body inclusion in a fluid, a subset of the DPD particles are
initially assigned a location in space such that they approximate the shape of the
object [6]. The motion of these particles is then constrained so that their relative

positions never change. The total force and torque are determined from the DPD
particle interactions and the rigid body moves according to the Euler equations.
For our simulations we use a quaternion-based scheme developed by Omelayan
[7] and modified by Martys and Mountain [8] for a velocity-Verlet algorithm to
integrate the equations of motion. Finally, we use a Lees-Edwards boundary con-
dition [3, pp 246-247] to produce a shearing effect akin to an applied strain at the
boundaries.

Because of the complexity and size of the simulations (modeling a suspen-
sion of tens of thousands of different shaped rigid bodies using millions of DPD
particles), it is desirable to utilize a parallel computation scheme to make such
calculations tractable over a reasonable period of time.

Two types of parallelization approaches are usually considered for MD codes.
The first is rather straightforward and involves splitting up the calculation of forces
between particles over the processors. We refer to this as a “replicated data” par-
allelization scheme. However, as is well known, such an approach, for paralleliza-
tion of codes, can involve a large amount of message passing and as a result the
performance of the code may quickly degrade with increasing number of proces-
sors. An alternative approach is to spatially decompose the computational domain
between the processors. For molecular dynamics simulations the latter approach
(spatial decomposition) has been shown to significantly reduce the amount of mes-
sage passing, allowing for better scaling of the number of computational cycles
performed (for a fixed period) with increasing number of processors.

In the process of developing a spatial decomposition version of our DPD code
it became apparent that our algorithms include features, somewhat different than
typical molecular dynamics codes, that need to be properly handled in the paral-
lelization. First, contributions from random forces between DPD particles may
need to be passed between processors so that momentum is conserved. Second, as
we are utilizing a Lees-Edwards boundary condition (of course this feature is not
unique to DPD), the DPD particles, rigid bodies and related information may need
to be passed to processors that are not necessarily neighbors in the sense of the
usual periodic boundary conditions. Third, as the rigid bodies come in a variety
of shapes and sizes that may span a region bigger than the computational domain
of several processors, we need to properly account for all the forces contributing
to their motion. In this paper we describe our algorithms which extend the usual
spatial decomposition approach to account for these features in our DPD code.
We also show some results concerning the performance of the our code on several
different computational platforms.

1. QDPD Spatial Decomposition

A. Outline of the parallel algorithm

QDPD was originally written in Fortran 77 as a sequential program. As with most
molecular dynamics alogrithms, a significant fraction of the computation time
involves calculating forces between particles. In DPD the forces are short-range,
decaying rapidly with separation, which means that only nearby particles, closer
than some cutoff distance r., need be considered. We use an implementation of
the link-cell method of Quentrec and Brot [9], described in Allen and Tildesley’s
book [3, pp 149-152], to construct neighbor lists.

Since the sequential link-cell algorithm breaks the simulation space into do-
mains, it seems natural to map this geometrical, or domain, decomposition onto
separate processors. Doing so is the essence of the parallel link-cell technique
[10, 11] i. By subdividing the physical volume among processors, most of the
computation becomes local and communication is minimized. There is, in princi-
ple, a 1/ P scaling, where P is the number of processors, with a correction due to
message passing between processors. Hence, the spatial decomposition approach
may be effective for distributed-memory computers and networks of workstations.
Our parallelization of this algorithm was accomplished with the Message Passing
Interface (MPI) library [1].

The basic idea of our spatial decomposition follows. Split the total volume into
P domains. If we choose a 1D decomposition (“slices of bread”), then the pth
processor is responsible for particles whose x-coordinates lie in the range

(p—1)Ly/P < <pLy/P. 1)

Similar equations apply for 2D and 3D decompositions for simulation dimensions
L, and L,. An algorithm due to Plimpton [13] is used to assign P processors
to a 3D box so as to minimize the surface area (and hence, yield a good load
balancing).

Each processor runs a link-cell program corresponding to a particular domain
of the simulation box. For example?, in Figure 1 nine processors were used to

1See Plimpton [12] for excellent discussions of all fast parallel agorithms.
2Simulations are in 3D but illustrations are in 2D.

divide a 2D simulation space into domains, each processor being assigned to one
of the nine domains®. Each domain is then divided into cells for the link-cell
algorithm. To complete the force calculation on particles in cells at the interface
between processor domains, each processor needs to know information about the
particles in the adjacent cells, which are found on a neighboring processor. At
each timestep we communicate this information across the interface between ad-
jacent processors in these edge cells. The information that has to be passed are the
particle positions and velocities needed for the forces calculations and a unique
particle label. The unique particle label is needed because, in DPD, different
random forces are associated with each particle pair. As forces are considered
between two particles i and j, the particle identifiers are used to communicate this
force back to the processor which “owns” j (the “pair” particle of i) and add it
(with the appropriate sign) to the forces acting on particle j*.

To understand the communication between processors, consider processors 3,4,5
in Fig 1. Dashed lines are used to show the cells in processors 3 and 5 which are
adjacent to 4. Information about the particles in these dashed line cells is commu-
nicated to 4, making up “ghost” cells on 4. To complete the “extended volume”
needed on processor 4 to compute the forces on all the particles it owns, informa-
tion is communicated (swapped) across the interface between adjacent processors
in the y direction as well. To account for the cross-hatched corner cells, the swap
in y includes information about not only particles that the processor owns but also
information about “ghost” particles in ghost cells. So processor 7 sends infor-
mation about particles in the dashed line cells as well as the cross-hatched cells
(obtained from processors 6 and 8) to processor 4. At this point processor 4 has
all the information it needs to calculate forces on all the particles it owns, and
similarly all of the other processors have all the information they need. These
exchanges of data can be achieved by one set of communications between the
processors. A processor only has to communicate once with all of its neighbors,
so each processor communicates with at most four other processors (six in 3D),
rather than, say 64 in a 64 processor replicated data calculation.

Once the extended volume has been built, a link-cell list of all particles in the
original volume plus the extended volume can be built. Looping over the parti-
cles in the original volume calculates the forces on them and their pair particles.
An extra set of communications between processors (the reverse of the commu-

3Each processor is assigned an index, where indices start at 0.
4Since, by Newton's third law, the force of i on j must be equal in magnitude and oppositein
signtotheforceof j oni.

nication swaps setting up the ghost cells) is done at this point to send pair par-
ticle forces back to the processors which own the pair particles in the extended
volume. Now we can calculate the new positions of all particles and move the
particles which have left a processor to their new “home” processor. If particles
move into domains controlled by other processors, information about the particle
must be moved to its new home processor. Again these exchanges of data can
be achieved by one set of communications between the processors. In this set of
communications, all information about a particle needed for one time step must
be communicated, not just the information needed for the forces calculation.

B. Further details

The above description summarizes many features of the spatial decomposition
approach, with the following additions. First, following Plimpton [13], we dis-
tinguish between owned particles and ghost particles, those particles that are on
neighboring processors and are part of the extended volume on any given pro-
cessor. For ghost particles, only the information needed to calculate forces is
communicated to neighboring processors. Second, for suspensions, there are two
types of particles, free “fluid” particles and particles belonging to rigid bodies. A
novel feature of this work is that we explicitly do not keep all particles belonging
to the same rigid body on the same processor. Since the largest rigid body that
might be built can consist of a significant fraction of all DPD particles, it would
be difficult if not impossible to handle such objects without serious load-balancing
implications. Each processor contains data sets for all rigid bodies consisting of
lists of particles with a unique object label. Every processor computes rigid body
properties (i.e. total forces, torques) contributed by each particle it owns, and
these properties are globally summed so that all processors have the same solid
inclusion properties. Since there are only a small number of rigid bodies (relative
to the number of particles), the amount of communication necessary for the global
sums is small and the amount of extra memory is also relatively small. Hence it is
an effective technique.

The formation of extended volumes using ghost cells requires additional expla-
nation. To accomodate the ghost cells, the number of cells in each direction is
increased by 2. So, for example, for a division of the central processor into 100
cells as in Figure 1, the number of cells in the x and y directions is 10. To ac-
comodate the left and right ghost cells, the = and y cell dimensions, A/, and M,

7

respectively, (including ghost cells) becomes 12 (10 + 2). We use the following to
define a cell index for particle i (ICELL;)

ICELL; = I, + ({,, —)M, + (I,, — 1) M, M,, (2)
where I, I,,, and I, are now given by
I, =1+ INT((r4,Sa + 0.5)M,), (3)

with r,, the coordinate of particle i, « = x,y or z, and S, are scale factors
whose purpose is to transform coordinates so that a processor’s owned particles in
a domain will have values in the range

2< I, <M, —1. (4)

In Figure 2 we show the central processor from Figure 1 again, with its own
and ghost cells renumbered according to the above. Using these scale factors,
it is straightforward to identify which particles need to be passed in all 4 (or 6)
directions. For example, particles whose I,, value is 2 are left edge particles and
need to be passed to the processor to the left; particles whose 7., value is 11 (M, -
1) are right edge particles and need to be passed to the processor on the right. It is
important to note that particles in ghost cells are included in subsequent swaps, so,
for example, particles whose 1, value is 2 are passed down (including particles in
the ghost cells with 7, = 1 and 12), and particles whose I,, value is 1 are passed
up. In this the way the particles in corner cells are made available to adjacent
processors. As processor 4 communicates information about particles in its edge
cells with 7, = 11 to processor 5, processor 5 in turn communicates information
about particles in its left edge cells to processor 4, which become the right edge
ghost cells on processor 4. So after swapping with processors to its left, right,
north, and south, the complete “extended volume” exists on processor 4, and this
can be followed by the link-cell list construction (I, = {1,12}, I, = {1,12}) and
computation of forces (for particles owned by this processor, which are those in
cells with 7, = {2,11}, I, = {2,11}).

Now consider Figure 1 again, and imagine calculating the forces using a single
processor and the link-cell algorithm, and subdividing the simulation box into 30
cells in = and y. The force calculation on particles in cells with 7,,, I, = {11,20}
in Figure 1 would be calculated exactly the same way as the particles owned by
processor 4 in Figure 2, for which I, I, = {2,11}, which is the essence of the
parallel link-cell method.

An important point that was skipped in the above discussion is the treatment of
the shear boundary conditions. In Figure 3 we show the Figure 1 simulation box
again, and three boxes above the simulation box, moving to the right, as well as
three boxes below the simulation box, moving to the left. 0/, 1/, and 2’ are images
of 0, 1, and 2 which have moved to the right because of the shear. 6’, 7/, and
8 have moved left. We also show the sheared upper boundary and the extended
volume we have to build prior to computing forces. Because of Newton’s third
law, the extended volume we need includes left, right, and up layers, but not down
(I, = 1). Care must be taken to include the shear shown in the figure. This is
accomplished by forming the y ghost layer before = (for 3D, the order is z, y, x).
The I, = 32 layer is formed by processors 0, 1, and 2 sending their 7, = 2 cells
to processors 6, 7, and 8 respectively, and adding the simulator box distance in y.
Consider the I, = 2 layer from processor 0 which now forms a ghost layer on top
of 6. The particles in this top ghost layer are now shifted to the right according
to the Lees-Edwards boundary condition [3, pp 149-152]. As a result of this
translation, some of the ghost particles on 6 will, in this case, need to be sent to
processor 7 (the shifted ghost layer originally totally on top of 6 is now the I,, = 32
ghost layer bounded by the edges of the 0’ cell). When this is done, it is important
to keep track of the communications so they can be reversed in the transfer of
Newton’s third law forces back to the home processor of the ghost particles. The
Lees-Edwards boundary condition is now satisfied with these maneuvers, that is,
particles leaving at the bottom of the simulation box enter at the top ghost layer
(the mirror image) with their = coordinate shifted to account for the strain.

I11. Results and Discussion

Figure 4°, shows the performance of our codes on two distributed memory archi-
tectures. For the replicated data version of our code, the best we could do was a
factor of 4.3 improvment on 16 processors on a Linux cluster with Myrinet. In
comparison, the spatial decomposition version of the code, running on the same
Linux cluster showed a greatly enhanced performance (a factor of 10.5 on 16 pro-
cessors). The best results, for the spatial decomposition version, show a speed up
of a factor of 24 on 27 200MHz Power3 processors on an IBM SP2 ¢ | a distributed

5In the fi gure we plot normalized processing time = (time to complete benchmark run on mul-
tiple processors) / (time to compute benchmark run on a single processor).

5The identifi cation of any commercial product or trade name does not imply endorsement or
recommendation by the National Ingtitute of Standards and Technology.

memory cluster, but with a high-speed interconnect which allows it to approach
the scalability of a shared memory machine in many cases.

Not surprisingly, our experience is that shared memory machines perform best
for this type of algorithm. For example, our spatial decomposition code has proven
effective in a shared memory environment [14] as well, where the speedups are
a factor of 29 on 32 processors of an SGI Origin 3000 system and a factor of 50
on 64 processors of the same system. In contrast, for the replicated data paral-
lelization, speedups of a factor of 17.5 on 24 processors of an SGI Origin 3000
[14]. Clearly, communication costs quickly become prohibitive for replicated data
parallelizations on distributed memory architectures. Scaling to a very large num-
ber of processors is poor even in the shared memory environment, and it makes
the replicated data approach almost unusable on distributed memory machines
including those with high-speed interconnects like the IBM SP2 cluster.

V. Summary

In adopting a spatial decomposition approach, we found a significant improvment
in performance of our codes despite the additional complications of communicat-
ing the random forces, implimentation of the Lees-Edwards boundary condition,
and accounting for objects that can extend over many processor domains. Clearly,
the main bottleneck of such an approach is the message passing between proces-
sors. As such technologies improve, we expect corresponding improvements in
the computional performance of our algorithms.

Acknowledgements

We would like to thank John G. Hagedorn for useful comments and program-
ming support, Robert Bohn and N. Alan Heckert for graphics support, and Chris
Schanzle for systems support.

References

[1] Message Passing Interface Forum, Int. J. Supercomput. Appl. 8 (3/4), 159
(1994).

10

[2] P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19 (1), 155
(1992).

[3] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon
Press, Oxford (1987).

[4] P. Espanol and P. Warren, Europhys. Lett 30, 191 (1995).
[5] C. Marsh, G. Backx, and M. H. Ernst, Europhys. Lett 38, 441 (1997).

[6] J. M. V. A. Koelman and P. J. Hoogerbrugge, Europhys. Lett. 21 (1), 363
(1993).

[7] 1. Omelyan, Computer Physics 12, 97 (1998).
[8] N.S. Martys and R. D. Mountain, Phys. Rev. E 59 (3), 3733 (1999).
[9] B. Quentrec and C. Brot,J. of Comput. Phys. 13, 430 (1973).
[10] M. Pinches, D. Tildesley and W. Smith, Mol. Simul. 6, 51 (1991).
[11] W. Smith, Comput. Phys. Commun. 67, 392 (1992).
[12] S.J. Plimpton,J. of Comput. Phys. 117, 1 (1995).

[13] S.J. Plimpton, R. Pollock, and M. Stevens, Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scientific Computing, March 1997.

[14] J. S. Sims, J. G. Hagedorn, P. M. Ketcham, S. G. Satterfield, T. J. Griffin,
W. L. George, H. A. Fowler, B. A. am Ende, H. K. Hung, R. B. Bohn, J. E.
Koontz, N. S. Martys, C. E. Bouldin, J. A. Warren, D. L. Feder, C. W. Clark,
B. J. Filla, and J. E. Devaney, J. Res. Natl. Inst. Stand. Technol. 105, 875
(2000).

11

TATATT T ST ITITrITTTT T

w
-
1
1 1 1 1 1 1 1 1 1

62

R P U | P R N

Fig. 1. A nine processor 2-D domain. The small rectangles are cells associated
with the link-cell algorithm. The dashed lines correspond to the ghost cells.

12

Doma@imdaries

12 \
1| s
10
9o |
r--- ===
8 I___ N
7 AL
6 1
5
s -
2 ! i

I, =1 ___I____I____I____I____I _____ I ____I____I____I____

Ix=| 12|34 |56 |7 |89]|10|11]12

Fig. 2. Enlargement of the central region of Figure 1. Link-cell boundaries be-
come processor domain boundaries. Dashed lines correspond to ghost cells.

13

Boxes above simulation box

moving to the right

Simulation

Boxes below
moving left

) [0} 1’ 2’

ly =31 :r _: ___ E

: 6 7 8 |

box == 3 4 5 5

5 0 1 2

iyt e :
B

Fig. 3. A nine processor 2-D domain decomposition and neighboring layers re-
sulting from application of an applied strain consistent with the Lees-Edwards

boundary condition.

14

A SPATIAL DECOMPOSITION: SP2

e®— B REPLICATED DATA: LINUX CLUSTER

NORMALIZED PROCESSING TIME

® SPATIAL DECOMPOSITION: LINUX CLUSTER

¢ \ \ \ \
l 2 4 8 18 32

NUMBER OF PROCESSORS

Fig. 4. Logarithm (base e) of normalized CPU time (seconds) versus number of
processors. The performance of the replicated data version degrades much more
quickly than the spatial decomposition version of the same code.

15

